In recent years, revolutionary discoveries in neuroscience and developmental psychology have transformed our understanding of infant development. We now know that starting from conception, the infant brain is wired by the environment. Everything that the infant experiences in his mother’s womb and after birth leaves a permanent imprint on his brain.

This book explains how even the most ordinary events, such as the words a mother speaks to her unborn son or the way a father holds his newborn daughter, evoke a cascade of biological changes—not only in the brain but also in the immune system and throughout the body. Every experience, from her trip down the birth canal to an afternoon in the park, shapes the health and personality of the child. Whether we intend it or not, everything we say and do teaches the infant a secret lesson about herself and us, her parents.

Tomorrow’s Baby translates these scientific insights into practical advice for parents and parents-to-be. An internationally acknowledged expert in early human development, Dr. Thomas Verny draws on his knowledge of the latest scientific research to explain how, with planning and proper support, parents can create an ideal environment for their babies. Dr. Verny advocates “conscious parenting,” which begins with the parent’s or caregiver’s informed acceptance of the enormous challenge of raising and nurturing a child. He offers a wealth of practical suggestions, from optimal prenatal communication to enhancing infants’ empathic abilities, as well as advice for building language acquisition, enhancing intelligence, and developing other social skills. Now, for the first time, parents can learn how to help actualize their child’s full potential, beginning with conception.
Contents

Introduction 7
1. Crossing the Amniotic Sea 13
2. The Dawn of Consciousness 29
3. Maternal Stressors and the Unborn 37
4. The Womb as Classroom 53
5. Birth and Personality 69
6. Sense and Sensibility of the Newborn 85
7. The Alchemy of Intimacy 103
8. Adoption and the Search for Identity 123
9. Experience As Architect of the Brain 137
10. The Mystery and Power of Early Memory 153
11. Depending on the Kindness of Strangers 171
12. When Things Go Wrong: Sad Children, Angry Children 189
13. Cultivating Basic Goodness: How to Enhance Empathy, Compassion, and Altruism 211
14. Conscious Parenting 221

Appendix: Roots of Personality Questionnaire and Key 237
Notes and References 265
Bibliography 295
Index 327
In what amounts to a paradigm shift in our understanding of the human mind, we now know that interaction with the environment is not simply an interesting feature of brain development but rather an absolute requirement—built in to the process as the brain grows from one cell to 100 billion, from the moment of conception on. It is this requirement for brain building, says neuroscientist Myron A. Hofer of Columbia University and the New York State Psychiatric Institute, that explains why there is so much fetal activity so early in pregnancy; interacting with the environment through movement, the unborn child’s experience provides a scaffold upon which the brain can form. No one doubts that the mother’s diet is important to the developing baby, but today studies by Hofer and others point to an even greater influence: incoming signals—crystallized through the mother as a swirl of behavior, sensation, feeling, and thought—immerse the unborn child in a primordial world of experience, continuously directing the development of the mind.

IN THE BEGINNING

The spark of a new life is lit when a sperm fertilizes an egg. Containing the mother’s genetic contribution to an offspring, eggs are released from the ovaries and travel down the fallopian tubes (the oviducts) to the uterus at the rate of about one a month.

Although eggs are few, sperm are plentiful. Produced in vast num-
bers—as many as 300 million with each ejaculation—they propel themselves up the cervix and through the fallopian tubes in a race to reach the egg. Just one sperm will win that race, entering the egg and triggering the biochemical chain reaction that will most likely result in the birth of a baby nine months later.

The quest for individuality and survival starts in these earliest moments, before conception itself, when spermatozoon, one varying from the next, compete for access to the egg. While most of the contenders propel themselves toward the egg at about four inches an hour, a few speed demons make the complete journey in five minutes. In fact, biologists now tell us, sperm cells seem to fall into two groups: warriors and lotharios. The soldiers form a rear guard whose function is to prevent any unauthorized personnel—another man’s sperm—from interfering with the amorous advances of their brothers.

In the recent past, experts thought that fertilization occurred when enzymes in the head of each sperm, acting like dynamite, blasted through the outer shell of the egg so that the sperm could lodge inside. Today we understand that each egg selects the sperm it mates with, making the first irrevocable decision in one’s life. Indeed, rather than passively participating in this drama, the egg opens its shell and literally embraces the sperm it feels attracted to.

When maternal and paternal genes commingle in a single cell, a new entity, called the zygote, is formed. Over the next few days the zygote divides again and again, giving rise first to a morula (Greek for “raspberry”) and then to a blastocyst.

After seven days the blastocyst floats down the oviduct to attach itself to the posterior wall of the uterus. But here it often runs into trouble. Because half the genetic material in the new organism derives from the father, the mother’s immune system identifies the blastocyst as a foreign substance and mounts an attack, just as it would against a virus or a splinter. As a result, many early embryos are aborted. This life-and-death struggle will mark all survivors through the process of cellular imprinting, in some sense becoming the first experiential “memory” we have.

THE BRAIN MAKES A DEBUT

After successful implantation of the blastocyst, the cells grow and differentiate, forming the beginnings of the skeleton, the kidneys, the heart, and the lungs. The first traces of the unborn’s brain emerge with the appearance of the “neural groove” along the growing but still tiny em-
bryo some 17 days after conception. By day 21, ridges called neural folds develop along the groove, and by day 27 the folds have wrapped around the groove to form the neural tube, precursor to the spinal cord and brain.

When the neural tube closes off at day 27, cells from its anterior end start dividing so rapidly that they double in number every hour and a half. As they divide they also differentiate, giving rise to the major brain structures—including the cerebral hemispheres, the cerebellum, the diencephalon, the midbrain, the pons, and the medulla oblongata. In these early days of gestation, primitive brain cells continue their rapid division, migrating from the original “zone of multiplication” at the anterior of the tube to the more distant regions of the flowering brain.

It is during this migratory voyage that brain cells, guided by a still obscure string of chemical messengers, begin to forge a true network. Because the system is multiplying so rapidly and because it is so complex, it is extremely vulnerable to damage by inappropriate concentrations of hormones or toxins and a host of outside disturbances. And consequences may be dire.

In one early mechanism, primitive cells form what scientists now call cortical ladders. Neural cells use these ladders to “climb” from the zone of multiplication to the outer regions of the cerebral cortex—the center of thought. If disrupted, cells may fail to get off the ladder and move to the side, so that the path for new climbers is blocked. In the case of gridlock, developmental abnormalities may result.

Two species of mutant mice, called reeler and staggerer because of their bizarre motor behavior, are believed to result from this type of developmental abnormality, says Arnold B. Scheibel, professor of neurobiology and psychiatry and former director of the Brain Research Institute at the UCLA Medical Center. In humans, similar problems may contribute to schizophrenia, temporal lobe epilepsy, dyslexia, and some types of character disorders. Preliminary studies suggest that the most intractable sociopaths may have suffered damage during the “ladder” sequence in the development of the brain.

But “climbing the ladder” is just one challenge facing embryonic brain cells. As the young network evolves, neurons must connect with specialized “target cells” in distant brain regions. If the targets have not yet developed, then proxy target cells are spawned. Without the target cells or their proxies, neurons end up in the wrong place or simply wither and die. If things go well, the proxy cells are destroyed and the real target cells take their place in the architecture of the brain.
"This remarkable sequence of processes, culminating in a 'change of partners' and the establishment of permanent connections, is subject to error," says Scheibel, "and the results may include a number of major and minor cognitive and emotional disorders that show up at various stages in the life of the individual. We are only at the beginning of our understanding of these complex phenomena, but certain types of dyslexia may be one of the results of problems during this change of cortical connections."

THE NATURE OF THE NETWORK

Finally, after migrating nerve cells reach their destination, they commence the process of networking by growing branches, or "dendrites." The dendrites deliver messages to the nerve cell's long, slender axon, which in turn carries the information to other receptive cells.

From the middle of the second trimester—about midway through gestation—an elaborate network of neurons, their projected axons, and their lush dendritic branches start communicating through connections known as synapses. A synapse is not a point of literal connection between two nerve cells but rather a microscopic gap. One cell communicates with the next by sending a chemical messenger (known as a neurotransmitter) across the synapse. The neurotransmitter released from the first cell provokes an electrical signal known as an action potential in the second. If the action potential is strong enough, it will cause the second cell to release its own neurotransmitter, thus passing the signal on. A single neuron may have tens of thousands of synaptic connections. At the present time about 150 unique neurotransmitters and trillions of synaptic connections have been identified in the brain of an unborn child.

The profusion of primitive neurons is great: at least fifty thousand cells are produced during each second of intrauterine life. So immense are the challenges involved in brain building that at least half our entire genome (the full catalogue of human genes on all the chromosomes) is devoted to producing this organ that will constitute only 2 percent of our body weight.

The complexity of the human brain far exceeds the instructional capacity of our genes. When all is said and done, the adult human brain will consist of about a hundred billion neurons, or nerve cells, embedded in a scaffolding of up to a trillion glial, or support, cells. Although genes may provide the blueprint for basic brain development, the final
location, pathway, and interrelationships of individual neurons are determined, to a large degree, by early environmental input: nutrition, states of wellness or disease, presence of toxins like cigarette smoke or alcohol, persistent sounds or movements, maternal mood and associated neurotransmitters, and intrauterine conditions, such as the presence of twins. Such input is always idiosyncratic, different for each unborn child; as surely as our genes, it accounts for the diversity of personality and style, for the unique nature of each individual on the planet today.

BRAIN EVOLUTION

This new way of thinking is bolstered by findings from evolutionary science itself. For most of the past hundred years, evolutionary biologists instructed by Darwin believed that one elegant mechanism could explain the diversity of life on Earth. According to this prevailing view, all species evolve through random mutation of the genes. Populations with new traits arise when mutations produce organisms especially good at finding food, avoiding predators, or producing offspring. After generations, these successful mutants may replace earlier organisms within their species or even form whole new species. In this view of natural selection, nature selected the organisms with the genes most likely to survive but, other than that choice, had no impact on the expression of the genes.

A convincing challenge to Darwin, however, has been made with the theory of “directed evolution,” spearheaded by scientists such as the molecular biologists John Cairns and Barry Hall. Cairns and Hall are hardly creationists; instead, their research shows that the mutations driving evolution are not always random. In experiment after experiment, they find, microorganisms are whipping up mutations especially suited to their surroundings—as if some inner molecular scientist were helping the cells adjust to environmental requirements and needs. In light of such studies, scientists have come to recognize living organisms as “dynamic systems” capable of actively reprogramming gene behaviors to accommodate environmental challenges.

Now that we have cracked the human genome, we are learning that within the staggeringly long sequences of DNA, only a small percent codes for proteins. More than 95 percent of DNA is “noncoding,” made up of on and off switches for regulating the activities of genes. Robert Sapolsky, professor of biological sciences and neurology at Stanford,
notes, "It's like you have a 100-page book, and 95 of the pages are instructions and advice for reading the other 5 pages."

What triggers these switches? Many things, including messengers from inside the cells and the body, and external factors from nutrients to chemical toxins. Carcinogens may enter a cell, bind to a DNA switch, and turn on the genes that cause the uncontrolled proliferation that eventually leads to cancer. Through the act of breast-feeding, a mother initiates a train of events that activates genes related to infant growth.

The "malleable aspect of gene expression is an extremely important point in terms of fetal development," says cellular biologist Bruce H. Lipton. "In the uterus, the fetus is constantly downloading genetic information required for development and growth. But when compromised, it will modulate the instructions, enacting behavioral programs that enable it to stay alive."

Every living organism has two categories of behavior for survival: those supporting growth, and those supporting protection. Growth-related behaviors include the search for nutrients, supportive environments, and mates for species survival. Protection behaviors, on the other hand, are employed by organisms to avoid harm. In single cells, survival behaviors related to growth and protection can be distinguished by movement toward or away from a given target or source. But in more complex organisms—the human prenatethe instance—behaviors result when cells act in concert. There's a kind of "gang" reaction, Lipton notes, in which patterns of development are shunted toward growth or protection, depending on the environment outside. As with every living system, the selection of growth or protection programs by the unborn child is based on his perception of his environment.

Such perceptions reach developing children in myriad ways, but for the unborn child, the only channel is the mother. She serves as the baby's conduit to the outside world.

"Initially, one might think that free passage of maternal signals through the placenta represents a 'defect' in nature's mechanism," Lipton says. "But far from being a design flaw, the transfer of maternal environment-related signals to the fetal system is nature's way of providing the baby with an advantage in dealing with the world she will soon enter. The old axiom, being forewarned is being forearmed, is appropriate to apply to this situation."

In the best of all worlds, a mother's ability to relay environmental information to the developing offspring will directly affect the selection of gene programs best suited to survival. The downside of the story is
Index

abortion, denial of, 49
abuse, 200–201
 emotional, 203, 204
 physical, 202, 204, 205
 sexual, 204, 205, 206
ACTH (adrenocorticotropic hormone), 42, 80, 97–98
action potential, 16
adoption, 123–36
 adoptive parents, 128–29
 attachment and, 126–27, 129–32
 babies and birth mothers, 127–28, 132
 challenging adoptions, 130–32
 open, 128, 134–35
 research on, 124–27
 search for roots and, 132–34
adrenaline, 38, 61, 73–74, 176–77, 199
adrenocorticotropic hormone (ACTH), 42, 80, 97–98
African American families, 228
aggression, 21, 72, 81, 191, 192–93, 196–98, 200
AIDS, 26
Ainsworth, Mary, 106–7
alcohol use, 24, 41, 46, 47, 126, 128, 196, 197, 205, 232
Alexander, Duane, 174
allergies, 109
alpha state, 65, 98
altruism, 211, 212–17
Ames, Louise Bates, 178
amnesia, 167
amniocentesis, 38
amygdala, 21, 142, 167, 176, 213
analgesia, 71, 75–76, 91–93
Anand, K. J. S., 90
androge, 43, 44
anesthesia, 71, 75–76, 93
anorexia nervosa, 201
antidepressants, 190
antisocial personality disorder, 206, 232
anxiety, 38–39, 41–42, 94, 205
anxiously attached child, 116
Apgar scores, 46
archaeocortex, 212
Aristotle, 157
Arms, Suzanne, 134
artificial insemination, 130
asthma, 109, 175
attachment. See bonding and attachment
attachment disorder, 131
attention deficits, 38
attunement, 109–11, 146–47, 172, 185
au pairs, 180
automatic grasp, 89
autonomic nervous system, 42, 111–12, 192
Axinn, William G., 49, 55
Barber, Jennifer S., 49
Bardot, Brigitte, 54
Baroque music, 64–65
Belsky, Jay, 174
beta-endorphins, 35, 42, 45, 192
beta state, 65
bipolar disorder, 205, 206
Birnholz, Jason, 29
birth augmentation, 76
birth defects, 38
birth induction, 76
birth order, 82–83
birth process, 69–84
baby-friendly approach to, 70–72
birth order and, 82–83
birth timing and, 79–80
delivery complications, 71, 75–78, 81–82
memory of, 162–64
neonatal stimulation in, 72–73
neurohormones of birth and, 73–75
personality traits of child and, 75–78
preparation for, 63–64, 74–75
self-destructive behavior and, 81–82
social support in, 63–64, 73–75
stress response and, 70–72
traumatic events in, 69–71, 75–78
birth weight, 83
bisexuality, 44
Blalock, Ed, 158
blastocysts, 14
blastula, 155–56
block, 77
Bly, Robert, 212, 228–29
bonding and attachment, 63, 103–21, 177–78
adoption and, 126–27, 129–32
biology of, 9–10
breast-feeding and, 104, 107–9
channels of attunement, 109–11
child care and, 183
eyearly studies of, 105–7
elements of, 104–5
hands-on parenting and, 119–21
hierarchy of attachment objects, 118–19
hormones of attachment, 107–8
insecure attachment, 107, 115–17, 174–75
interaction versus stimulation and, 113–14
origins of, 74–76
power of, 103–4
secure attachment, 8, 107, 114–15, 216
social nervous system and, 111–12
types of attachment, 114–17
working parents and, 117–19, 171–74, 185–86
borderline personality disorder, 205–6
Bowlby, John, 106–7
brain
alpha state, 65, 98
beta state, 65
critical periods and, 7, 93
elements for optimum development of, 119–20
evolution of, 17–19
fetal nutrition and, 22–24
first traces of, 14–16
gender and, 19–22
hypothalamic-pituitary-adrenal (HPA) axis, 42, 176, 192
immune system and, 157–58
origins of violence and, 194–95
pain and neonate, 93
stress hormones and, 42–46
tripartite, 212–14
brain development, 137–52
attunement of parents and, 146–47, 172, 185
day care and, 176–78
emotional window in, 144–45
language window and, 149–50
mutual regulation model of, 145–46
parental responses and, 139–40
Piaget and, 8, 137–38, 141–42
plasticity of brain, 140–43
sensory perception and, 143–44
socialization window in, 147–49
style and substance in, 150–51
Index

videotape studies and, 138–39
violence and, 198–200, 204
brain scans, 8–9
brain stem, 198–99, 212
Brandtjen, Henry, 177
Brazelton, T. Berry, 67, 88, 124
breast cancer, 109
breast-feeding, 18, 63, 73, 104, 107–9
breech babies, 77–78
broken homes, 191–92
Brott, Boris, 64
bulimia, 201

caffeinated beverages, 23
Cairns, John, 17
calories, 22
cancer, 109
carcinogens, 18
Carpenter, Genevieve, 87–88
castration, 20, 21
catecholamines, 39, 97
cell division, 158–59
cellular memory, 14, 31, 155–58
cerebellar hemispheres, 142
cerebellum, 15
cerebral hemispheres, 15
Cesarean deliveries, 76–77
Chamberlain, David B., 163
Cheek, David B., 162–63
childbirth preparation classes, 63–64, 74–75
child care
day care centers, 174–79
nannies, 171–72, 179–82
nonmaternal caregivers, 171–74, 179–82

television and, 182–85
Childs, Marshall R., 34
chlamydia, 26
choleystokinin, 108
chorionic villi, 31
Chugani, Harry, 110, 141–43
cingulate cortex, 142
circumcision, 91
cirrhosis, 109
Clements, Michele, 64
cobweb-cleaning sessions, 57–59
cocaine, 25, 46
coffee, 23
coherent narratives, 120
Coker, Ann, 49
colitis, 109
collaboration, 120
color, 86, 89
communication
between brain and immune system, 158
breakdowns in, 146–47
emotional, 120
between infant and parents, 104–5, 114–15, 143–44
intuitive, 61–62
molecular, 9, 61
between parents, 57–59
between parents and fetus, 59–60, 65–66
sensory, 61, 86–88
Comte, Auguste, 211
conception, 13–14, 30–31
conduct disorder, 25
connexin, 79
conscious memory, 160
consciousness of child, 29–36
cobweb-cleaning sessions and, 57–59
fetal pain and, 34–35
language acquisition, 33–34
sensation and, 29–30
sound and, 32–33, 62–65, 216–17
thought and, 30–32
contingent responsiveness, 225
Coons, Philip M., 204
corporal punishment, 231–33
cortical ladders, 15
corticosterone, 94
corticotropin-releasing factor (CRF), 109–10
corticotropin-releasing hormone (CRH), 42–43, 80
cortisol, 35, 38, 42–43, 79, 80, 159, 163, 176–77, 199
cortisone, 192
"crack babies," 25
creationism, 17
CRH (corticotropin-releasing hormone), 42–43, 80
criminal behavior, 8, 25, 81–82, 192–93
critical periods, 7, 93
criticism, 229–31
Crohn's disease, 109
cross fostering, 39–40
crying, 46, 104, 214–15
cuddle hunger, 77
cultural differences, 124, 151

Darwin, Charles, 8, 17
day care centers, 174–79
deCasper, Anthony, 32–33
dehydrotosterone (DHT), 44
dendrites, 16, 24
depression, 20, 38, 41–42, 131
of children, 189–92, 204–5
flu and, 25
impact of maternal, 45–46,
144–45, 147, 173, 193
infant, 190
Dettling, Andrea, 176
diabetes, 40, 47, 109
Diamond, Marian, 66–67
Dick-Read, Grantley, 71
diencephalon, 15, 212
diethylstilbestrol (DES), 44
dieting, 23
digestive problems, 38
directed evolution, 17
disorganized state, 99
dissociative disorder (multiple personality), 167, 204
distress signals, 18–19
DNA, 17–18
docosahexaenoic acid (DHA), 23–24
domestic abuse, 47–48, 54
Donzella, Bonny, 176
dopamine, 24–25
Dorner, Gunter, 45
doula, 74–75
dream sleep, 30
drug therapy, 190–91
drug use, 25, 41, 47, 81, 126, 128, 175, 197–98, 205
dual-earner families, 118
dynamic systems, 17
dyslexia, 15
ear infection, 109
eating disorders, 201
EEGs, 24

egg cells, 13–14, 31
egozentrigism, 137
eicosapentaenoic acid (EPA), 23–24
embryo, 14, 31, 155–56
Emerson, William, 78
emotional abuse, 203, 204
emotional communication, 120
empathy
developing, 119–21, 137–38,
139–40, 215–16
in infants, 214–15
endorphins, 35, 38, 42, 45, 74, 108,
112, 148, 159, 213
enriched experimental environments,
66–67
entrainment, 10, 104, 105
environment, genetics versus, 10
epinephrine, 97
estrogen, 44, 79–80
evolutionary biology, 17
explicit memory, 160, 165–66
eye-to-eye contact, 10, 72, 74, 104
facial expression, 86–89, 111, 112,
fallopian tubes, 13–14
false memory, 166–68
fatherlessness, 228–29
fathers
birth, 134, 135
high-risk, 54, 206–7
importance of, 227–29
infant massage and, 97
paternal attachment and, 118
fear, 21, 50, 70
feelings, 26
fertilization, 13–14, 31, 155–56
fetal alcohol syndrome (FAS), 24, 197
fetal monitoring, 76
fetus
heart rate of, 40
memories of womb, 153–54,
160–62, 163–64, 217–18
music and, 62–65, 217–18
nutrition and, 22–24
pain and, 34–35
parental dialogue with, 59–60,
65–66
sex hormones and, 19–22, 61
stress and, 35, 38–39
touch and, 65–66
voice of mother, 32–33, 34, 62, 86, 87–88, 104
Field, Tiffany M., 96–97
fight-or-flight reaction, 38, 73–74, 176, 200, 203
Fisk, Nicholas M., 35
flashbulb memories, 166
flu, 25
Flynn, Amy, 89–90
folic acid, 22, 23
forceps deliveries, 76, 81
Freud, Sigmund, 8, 30, 59–60, 69–70
Friedman, Sarah, 174
frontal cortex, 142
galvanic skin response, 98
gametes, 13–14, 30–31
gastrin, 108
gender, 19–22
gender identity, 43–45, 228
genetics, 7, 10
genomes, 16
gentle birth, 71–72
German measles, 26
Gianino, Andrew F., Jr., 145, 146
Givens, Alice M., 161–62
glial cells, 16–17
gluocorticoids, 39
glucose metabolism, 141–42
gonorrhea, 26
Goodyear, Ian, 190
Gopnik, Alison, 143–44
grasp reflex, 89
Greenfield, Susan A., 111–12
Griffith, J. P. C., 85
growth-related behaviors, 18–19
Gunnar, Megan, 176

Hall, Barry, 17
Hall, Howard, 157–58
Hall, Wendy, 98
hand-eye coordination, 89
Harlow, Harry, 106
Harlow, Margaret, 106
Harris, Judith Rich, 119
Harris, Robert Alton, 202, 203
Hart, Betty, 149
Hays, Sharon, 118
Healthy Start program, 207
heartbeat, of mother, 109
heart disease, 40
herpes simplex, 26
high-risk parents, 54, 206–7
hindbrain, 212–13
hippocampus, 43, 165–66, 167, 176
Hofer, Myron A., 13
homosexuality, 44, 45
hospitalism, 105–6, 131
HPA (hypothalamic-pituitary-adrenal axis), 42, 176, 192
hugging, 104
hydrocephalus, 91–92
hyperactivity, 38
hypervigilance, 200
hypnosis, 163
hypothalamic-pituitary-adrenal axis (HPA), 42, 176, 192
hypothalamus, 21, 73, 80, 107–8, 213

identity
adoption and, 132–34
gender, 43–45, 228
imitation, 138–39
immune system, 157–58, 192
implantation, 14, 31, 155–56
implicit memory, 160
imprinting, 183
impulsivity, 81
infant massage, 96–97
infant mortality, 48–49
infectious disease, 25–26
insecure attachment, 107, 115–17, 174–75
intelligence, 65–67
intonation, 33
intrauterine sounds, 99
intuitive communication, 61–62
in vitro fertilization (IVF), 130
irritability, 38
Jacobson, Bertil, 81
Kaminski, June, 98
Kennedy, John F., 166
Kennell, John H., 103–4, 107, 118
Kirk, M. David, 126–27
kissing, 104
Klaus, Marshall H., 103–4, 107, 118
<table>
<thead>
<tr>
<th>Author/Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koren, Gideon</td>
<td>91</td>
</tr>
<tr>
<td>Kuhl, Patricia K.</td>
<td>143-44</td>
</tr>
<tr>
<td>labor and childbirth. See birth process</td>
<td></td>
</tr>
<tr>
<td>Lamaze, Fernand</td>
<td>71</td>
</tr>
<tr>
<td>Lamaze exercises</td>
<td>161</td>
</tr>
<tr>
<td>language acquisition</td>
<td>33-34, 65, 149-50, 173-74, 183</td>
</tr>
<tr>
<td>Leboyer, Frederick</td>
<td>71-72</td>
</tr>
<tr>
<td>LeDoux, Joseph</td>
<td>166</td>
</tr>
<tr>
<td>life-event stress</td>
<td>41</td>
</tr>
<tr>
<td>life span</td>
<td>20</td>
</tr>
<tr>
<td>Lifton, Betty Jean</td>
<td>123</td>
</tr>
<tr>
<td>ligands</td>
<td>158-59</td>
</tr>
<tr>
<td>limbic system</td>
<td>142, 199, 212</td>
</tr>
<tr>
<td>Lipton, Bruce H.</td>
<td>18-19, 156</td>
</tr>
<tr>
<td>Lorenz, Konrad</td>
<td>183</td>
</tr>
<tr>
<td>“love hormone.” See oxytocin</td>
<td></td>
</tr>
<tr>
<td>lovenmaking</td>
<td>112</td>
</tr>
<tr>
<td>low birth weight</td>
<td>20, 41, 47, 48-49</td>
</tr>
<tr>
<td>lymphoma</td>
<td>109</td>
</tr>
<tr>
<td>MacFarlane, Aiden</td>
<td>87</td>
</tr>
<tr>
<td>Machon, Ricardo A.</td>
<td>25</td>
</tr>
<tr>
<td>MacMillan, Harriet L.</td>
<td>232</td>
</tr>
<tr>
<td>Madaule, Paul</td>
<td>124-25, 129</td>
</tr>
<tr>
<td>Mason, David Edwin</td>
<td>202, 203</td>
</tr>
<tr>
<td>maternal deprivation</td>
<td>105-7, 118</td>
</tr>
<tr>
<td>maternal rejection</td>
<td>81, 82</td>
</tr>
<tr>
<td>maternal stressors</td>
<td>37-41</td>
</tr>
<tr>
<td>depression</td>
<td>45-46, 144-45, 147, 173, 193</td>
</tr>
<tr>
<td>loss during pregnancy</td>
<td>49-50</td>
</tr>
<tr>
<td>nature of</td>
<td>38-42</td>
</tr>
<tr>
<td>sexual orientation</td>
<td>43-45</td>
</tr>
<tr>
<td>stress, defined</td>
<td>39</td>
</tr>
<tr>
<td>stress hormones</td>
<td>42-46</td>
</tr>
<tr>
<td>unwanted children</td>
<td>48-49, 55, 202</td>
</tr>
<tr>
<td>violence and pregnancy</td>
<td>47-48, 54</td>
</tr>
<tr>
<td>Mayes, Linda</td>
<td>25</td>
</tr>
<tr>
<td>McClean, Mark</td>
<td>80</td>
</tr>
<tr>
<td>McCord, Wendy</td>
<td>129-30</td>
</tr>
<tr>
<td>McEwen, Bruce</td>
<td>20, 21</td>
</tr>
<tr>
<td>McMillen, Caroline</td>
<td>80</td>
</tr>
<tr>
<td>McNaughton, Bruce</td>
<td>165-66</td>
</tr>
<tr>
<td>medulla oblongata</td>
<td>15</td>
</tr>
<tr>
<td>Meltzoff, Andrew</td>
<td>138, 143-44, 165, 214</td>
</tr>
<tr>
<td>memory</td>
<td>153-69</td>
</tr>
<tr>
<td>of birth process</td>
<td>162-64</td>
</tr>
<tr>
<td>bodywide</td>
<td>158-60</td>
</tr>
<tr>
<td>cellular</td>
<td>14, 31, 155-58</td>
</tr>
<tr>
<td>duration of</td>
<td>165-66</td>
</tr>
<tr>
<td>false</td>
<td>166-68</td>
</tr>
<tr>
<td>immune system and</td>
<td>157-58</td>
</tr>
<tr>
<td>infant and toddler</td>
<td>164-65</td>
</tr>
<tr>
<td>and memory “switch,”</td>
<td>154-55</td>
</tr>
<tr>
<td>origins of</td>
<td>155-57</td>
</tr>
<tr>
<td>oxytocin and</td>
<td>163</td>
</tr>
<tr>
<td>sense of self and</td>
<td>160-62</td>
</tr>
<tr>
<td>stress and</td>
<td>166</td>
</tr>
<tr>
<td>of the womb</td>
<td>153-54, 160-62, 163-64, 217-18</td>
</tr>
<tr>
<td>memory loss</td>
<td>94, 163</td>
</tr>
<tr>
<td>meningitis</td>
<td>109</td>
</tr>
<tr>
<td>mesocortex</td>
<td>212-13</td>
</tr>
<tr>
<td>messenger molecules</td>
<td>9, 61</td>
</tr>
<tr>
<td>midazolam</td>
<td>93</td>
</tr>
<tr>
<td>midbrain</td>
<td>15, 199, 212-13</td>
</tr>
<tr>
<td>midwife</td>
<td>74-75</td>
</tr>
<tr>
<td>minerals</td>
<td>22</td>
</tr>
<tr>
<td>miscarriage</td>
<td>23, 50</td>
</tr>
<tr>
<td>modeling</td>
<td>216-17</td>
</tr>
<tr>
<td>molecular communication</td>
<td>9, 61</td>
</tr>
<tr>
<td>monocular occlusion</td>
<td>143</td>
</tr>
<tr>
<td>Montagu, Ashley</td>
<td>231</td>
</tr>
<tr>
<td>Montemurro, Rosario N. Rozada</td>
<td>63-64</td>
</tr>
<tr>
<td>moods</td>
<td>26, 145-46, 157</td>
</tr>
<tr>
<td>mora</td>
<td>33</td>
</tr>
<tr>
<td>moral values</td>
<td>216-18</td>
</tr>
<tr>
<td>morphine</td>
<td>93</td>
</tr>
<tr>
<td>morula</td>
<td>14</td>
</tr>
<tr>
<td>mothers</td>
<td>227-29</td>
</tr>
<tr>
<td>high-risk</td>
<td>54, 206-7</td>
</tr>
<tr>
<td>and maternal depression</td>
<td>45-46, 144-45, 147, 173, 193</td>
</tr>
<tr>
<td>maternal deprivation and</td>
<td>105-7, 118</td>
</tr>
<tr>
<td>as primary child-rearers</td>
<td>118</td>
</tr>
<tr>
<td>unwed</td>
<td>133-34, 229</td>
</tr>
<tr>
<td>voice of</td>
<td>32-33, 34, 62, 86, 87-88, 104</td>
</tr>
<tr>
<td>See also bonding and attachment</td>
<td></td>
</tr>
<tr>
<td>motor problems</td>
<td>38</td>
</tr>
<tr>
<td>Mott, Frances J.</td>
<td>154</td>
</tr>
<tr>
<td>movement of fetus, stress and</td>
<td>38-39</td>
</tr>
<tr>
<td>Mozart, music of</td>
<td>64-65</td>
</tr>
<tr>
<td>multiple personality</td>
<td>167, 204</td>
</tr>
<tr>
<td>music</td>
<td>62-65, 97-99, 217-18</td>
</tr>
</tbody>
</table>
mutation, 17
mute mothers, 34
mutual regulation model, 145–46
myelin, 112

nannies, 171–72, 179–82
National Institute of Child Health and Human Development (NICHHD), 172–74, 176, 177
National Institute of Mental Health (NIMH), 195
natural selection, 17
natural vaginal delivery, 75
neglect, 200–201
neocortex, 73, 212–14
neonatal intensive care unit (NICU), 94–95
neonate
 as active participant in world, 89–90
 adoption and, 127–28
 breast-feeding, 18, 63, 73, 104, 107–9
 changing ideas concerning, 99–100
 emotional radar of, 88
 empathy in, 214–15
 eye-to-eye contact and, 10, 72, 74, 104
 music and, 97–99
 neonatal intensive care unit and, 94–95
 neonatal stimulation program, 72–73
 pain and, 90–95, 100
 sense of self and, 9
 senses of, 86–88, 143–44
 stress and, 93–95
 touch and, 72, 77, 95–97, 104, 105
neural folds, 14–15
neural tube, 24
neural tube defects, 22
neurohormones, 38, 61, 157, 213
neurons, 33–34, 66–67, 113, 155
neuroreceptors, 43
neurotransmitters, 16, 38, 155
neutral tube, 15
newborn. See neonate
Newman, Louise, 190
Nisbett, Richard, 150–51
noradrenaline, 35, 61
norepinephrine, 46, 97, 157
nutrition, 22–24
Nystad, Wenche, 175–76

obesity, 109
Odent, Michel, 62–63, 71, 73–74, 108
odor, 86, 87, 104, 105
Oedipal effect, 226
Oedipus, 59–60, 128
Oliver, Samuel and Pearl, 217
omega-3 fatty acids, 23–24, 83
open adoption, 128, 134–35
opiates, 42–43
orbitofrontal cortex, 110–11
organized state, 98–99
orphanages, 131
osteoporosis, 109
Otto Lewis, Dorothy, 196, 202–3, 204
ovarian cancer, 109
ovaries, 19
ovum, 13–14, 31, 155–56
oxytocin, 38, 74, 76, 107–8, 111, 112, 163, 213

pain
 analgesia and, 71, 75–76, 91–93
 of fetus, 34–35
 neonatal intensive care unit (NICU), 94–95
 of newborn, 90–95, 100
Panksepp, Jaak, 44
Panneton, Robin, 33
Panthuraamphorn, Chairat, 70, 72–73
parasympathetic nervous system, 112
parenting, 221–36
 avoiding criticism, 229–31
 avoiding stereotypes, 226
 communication between parents, 57–59
 communication between parents and unborn child, 59–60
 expectations of parents, 83
 facing demons in, 57–59, 223–24
 father love and mother love in, 227–29
 key tips for, 234–36
 new paradigm for, 9–11
parenting (cont.)
nurturing versus managing, 55–57
parenting style, 40
priorities in, 224–25
readiness for parenthood, 53–55,
223–24
resolving inner conflicts, 227
sensitivities of children and, 225
spanking and, 231–33
Paulson, Morris, 191
Pearce, Joseph Chilton, 183
Perris, Eve, 164
Perry, Bruce D., 194, 198–99,
200–201, 203, 204
personality
birth process and, 75–78
day care and, 174–75
peers and, 119
self-destructive behavior and, 78,
81–82
personality disorders, 23, 126, 205–6, 232
Pert, Candace, 157, 158–59
Peterson, Gail, 50
PET scans, 141–43
Pfaff, Donald, 20–21
physical abuse, 202, 204, 205
Piaget, Jean, 8, 137–38, 141–42
Piontelli, Alessandra, 214
pitocin, 76
pituitary gland, 73
placenta, 20, 80, 83, 98
pneumonia, 109
pons, 15
Porges, Stephen, 111
Porter, Fran Lang, 93
postpartum depression, 46, 109
post-traumatic stress disorder, 92–93, 167, 205
poverty, 8, 82, 175, 203, 207
preeclampsia, 20, 81
prefrontal cortex, 10, 110
pregnancy
loss during, 49–50
music and, 62–65
nurturing versus managing approach to, 55–57
readiness for parenthood, 53–55,
223–24
Index
teenage, 46
violence and, 47–48, 54
prematurity, 20, 41–43, 47, 50, 79–80
neonatal intensive care unit (NICU), 94–95
touch and, 95–96
prenatal famine, 23
Prescott, James W., 131–32
preterm babies, 20, 35
progesterone, 79
prolactin, 108, 213
propulsion, masculinity and, 20
protection behaviors, 18–19
Proust, Marcel, 165
proxy target cells, 15
Prozac, 190
psychic cleansing, 57–59
psychotherapy
adoptees, 125–26
ideas about infants and,
99–100
self-esteem and, 190, 191
puberty, 43
punishment, 231–33
Purpura, Dominick, 30
radiation, 24
Radke-Yarrow, Marian, 215–16
rape, 48
Rauscher, Frances, 64–65
Reagan, Ronald, 166
receptive language, 89
reflective dialogue, 120
relaxation, 97–98
repair, 120
repression, 167
response flexibility, 120
rheovirus, 157
rhythm, 33
rhythmicity, 104
Ridley, Todd, 149
Ritalin, 197–98
Romania, 131
Rosenthal, Perihan, 189–90
Rovee-Collier, Carolyn, 164
rubella, 26
Russell, Clare, 177
Sadger, Isador, 31
Sadiq, Asma, 89, 90
Index

sociopaths, 217
somatosensory affectional deprivation, 131–32
sound
fetus and, 32–33, 62–65, 216–17
music, 62–65, 97–99
neonate and, 72, 86
voice of mother, 32–33, 34, 62, 86,
87–88, 104
spanking, 231–33
sperm cells, 13–14, 31, 155–56
Spielrein, Sabina, 30
spina bifida, 22
spinal cord, 15, 34–35
spitting, 86, 87
Spitz, Rene, 105–6, 131, 224
Spock, Benjamin, 85
state-dependent learning, 168
Steiner, Jacob E., 87
steroid hormones, 44
strain, 41
stranger anxiety, 142
Strange Situation, 106–7
Straus, Murray A., 231
stress
defined, 39
memory and, 166
neonatal intensive care unit (NICU), 94–95
stress hormones, 35, 38, 42–46, 45,
46, 61, 176–77, 192, 199
stress response
birth process and, 70–72
classical music and, 64–65, 98–99
fetal, 35
infant massage and, 96–97
maternal. See maternal stressors
neonate, 93–95
stroke, 21–22
substance abuse. See alcohol use;
drug use
suck-o-meter, 32–33
sudden infant death syndrome (SIDS), 23, 109
suicidal behavior, 81, 189–90, 191,
202, 204
Sulloway, Frank, 82–83
support cells, 16–17
surrogate mother studies, 106
survival of the fittest, 19

Salk, Lee, 81, 98
Sandman, Curt A., 40–41
Sapolsky, Robert, 17–18
Scheibel, Arnold B., 15–16
schizoid personality disorder, 23
schizophrenia, 15, 23, 25, 38, 205,
206
Schmitt, Francis, 158
Schore, Allan N., 110, 148
secure attachment, 8, 107, 114–15, 216
self-destructive behavior, 78, 81–82,
191, 201
self-esteem, 49, 55, 140, 190, 191, 224
sensation, 29–30
senses, 31, 85–101, 143–44
hearing. See sound
smell, 86, 87, 104, 105
taste, 30, 87
touch, 65–66, 72, 77, 95–97, 104,
105
vision, 10, 32, 72, 74, 86, 89, 104,
143
sensitive period, 20–21, 44
sensory communication, 61, 86–88
serotonin, 110–11, 131, 141, 166
sex chromosomes, 19, 44
sex differentiation, 19–22
sex hormones, 19–22, 61
sex-typing, 226
sexual abuse, 204, 205, 206
sexual dysfunction, 205
sexual orientation, 43–45
shaming, 148–49, 203, 227, 229–31
Shapiro, Arnold, 89
Shetler, Donald, 65
Siegel, Daniel J., 113–14, 119–20
Singapore flu, 25
single-parent families, 118, 203, 228
sleep, 30
sleep problems, 38
smell, 86, 87, 104, 105
smiling, 86–89, 138–39
Smith, Roger, 79, 80
smoking, 24–25, 41, 46, 47
socialization, 147–49
social support
in childbirth process, 63–64, 73–75
teensage pregnancy and, 46
violence during pregnancy and,
47–48

Copyrighted Material
sympathetic nervous system, 112, 192
synapses, 16, 25, 113, 141, 142–43, 155
syphilis, 26

tactile sensitivity, 31–32
tag game, 20
target cells, 15
taste, 30, 87
teenage pregnancy, 46
television, 182–85, 195, 207
temporal lobe epilepsy, 15
temporal lobes, 110
Terr, Lenore, 166–67
testicles, 19
testosterone, 19, 20, 21, 44, 45
Thornton, Arland, 49
thought, 30–32
touch
 fetus and, 65–66
 neonate and, 72, 77, 95–97, 104, 105
toxemia, 20
toys, 19–20
trauma, 200–201
traumatic events
 in birth process, 69–71, 75–78, 81–82
 repression of memory of, 167
Tronick, Ed, 144–45, 146

ultrasound, 38
umbilical cord prolapse, 77, 81
unconscious memory, 160
unwanted children, 48–49, 55, 202
unwed mothers, 133–34, 229
uterine lining, 31
uterine rupture, 81

vagus, 112
Van de Carr, Rene, 65–66
vasopressin, 213
Verrier, Nancy, 124, 125
Violato, Claudio, 177
violence, 189–209
 birth complications and tendency toward, 81–82
 and the brain, 198–200, 204
 cognitive deprivation and, 204
 cycle of, 195–98, 207

emotional battering, 203
in the home, 195–98
origins of, 194–95
physiology of, 200–201
during pregnancy, 47–48, 54
prevention and intervention, 206–8
and roots of psychopathology, 204–6
spanking, 231–33
television, 182, 184, 195, 207
and violence cocktail, 201–3
viruses, 25, 157
vision, 10, 32, 72, 74, 86, 89, 104, 143
visual acuity, 144
visual cortex, 142
vitamins, 22, 23
voice of mother, 32–33, 34, 62, 86, 87–88, 104

Wadhwa, Pathik, 40–41
wakefulness, 30
Wasserman, Randi, 89
water birth, 71
weight gain, 46
Whitridge, Candace Fields, 57–59
Wilson, Matthew, 165–66
Winberg, J., 92–93
working parents, 171–87
 attachment challenges for, 117–19, 171–74, 185–86
 caregivers for children and, 171–74
day care and, 174–79
 flexible work hours, 56
nannies and, 171–72, 179–82
 nurturing versus managing and, 55–57
priorities of, 224–25
 professional, and language development, 149–50
television and, 182–85

X chromosomes, 19

Y chromosomes, 19, 44

zone of multiplication, 15
zygotes, 14, 155
sympathetic nervous system, 112, 192
synapses, 16, 25, 113, 141, 142–43, 155
syphilis, 26

tactile sensitivity, 31–32
tag game, 20
target cells, 15
taste, 30, 87
teenage pregnancy, 46
television, 182–85, 195, 207
temporal lobe epilepsy, 15
temporal lobes, 110
terr, Lenore, 166–67
testicles, 19
testosterone, 19, 20, 21, 44, 45
thornton, Arland, 49
tought, 30–32
touch
 fetus and, 65–66
 neonate and, 72, 77, 95–97, 104, 105
toxemia, 20
toys, 19–20
trauma, 200–201
traumatic events
 in birth process, 69–71, 75–78, 81–82
 repress of memory of, 167
tronick, Ed, 144–45, 146
ultrasound, 38
umbilical cord prolapse, 77, 81
unconscious memory, 160
unwanted children, 48–49, 55, 202
unwed mothers, 133–34, 229
uterine lining, 31
uterine rupture, 81
vagus, 112
van de carr, Rene, 65–66
vasopressin, 213
verrier, Nancy, 124, 125
violato, Claudio, 177
violence, 189–209
 birth complications and tendency toward, 81–82
 and the brain, 198–200, 204
 cognitive deprivation and, 204
 cycle of, 195–98, 207

emotional battering, 203
in the home, 195–98
origins of, 194–95
physiology of, 200–201
during pregnancy, 47–48, 54
prevention and intervention, 206–8
and roots of psychopathology, 204–6
spanking, 231–33
television, 182, 184, 195, 207
and violence cocktail, 201–3
viruses, 25, 157
vision, 10, 32, 72, 74, 86, 89, 104, 143
visual acuity, 144
visual cortex, 142
vitamins, 22, 23
voice of mother, 32–33, 34, 62, 86, 87–88, 104

wadhwa, pathik, 40–41
wakefulness, 30
wasserman, Randi, 89
water birth, 71
weight gain, 46
Whitridge, Candace Fields, 57–59
wilson, Matthew, 165–66
winberg, J., 92–93
working parents, 171–87
 attachment challenges for, 117–19, 171–74, 185–86
 caregivers for children and, 171–74
day care and, 174–79
flexible work hours, 56
nannies and, 171–72, 179–82
nurturing versus managing and, 55–57
priorities of, 224–25
professional, and language development, 149–50
television and, 182–85

x chromosomes, 19

y chromosomes, 19, 44

zone of multiplication, 15
zygotes, 14, 155
"We now know what has always seemed intuitively true—that separating the mind from the body or nature from nurture is impossible. Every biological process leaves a psychological imprint, and every psychological event changes the architecture of the brain. In short, early experience largely determines the architecture of the brain and the nature and extent of adult capacities....

"The realization that genetics is not destiny, that environment is paramount to development, places new responsibility on parents but carries new opportunity as well. The lessons of neuroscience, birth psychology, and early development, still largely unknown to the general public and even most experts, will transform the art of parenting. In the past we knew that stimulation was good. But what kind is best, how much, and by whom? Does a mother's tone of voice make a difference, and what music, if any, should a child be exposed to in the womb?

"When I was the parent of a young child, we could answer these questions only intuitively. Today parents can follow a road map based on definitive studies illuminating the complex web of influences essential for building a brain."

—FROM THE INTRODUCTION