
SHING-TUNG YAU is a force of nature. He is best known for 
conceiving the math behind string theory—which holds that, at the 
deepest level of reality, our universe is built out of 10-dimensional, 
subatomic vibrating strings. But Yau’s genius runs much deeper and 
wider: He has also spawned the modern synergy between geometry 
and physics, championed unprecedented teamwork in mathemat-
ics, and helped foster an intellectual rebirth in China.

Despite growing up in grinding poverty on a Hong Kong farm, Yau 
made his way to the University of California at Berkeley, where he 
studied with Chinese geometer Shiing-Shen Chern and the master of 
nonlinear equations, Charles Morrey. Then at age 29 Yau proved the 
Calabi conjecture, which posits that six-dimensional spaces lie hid-
den beneath the reality we perceive. These unseen dimensions lend 
rigor to string theory by supplementing the four dimensions—three of 
space and one of time—described in Einstein’s general relativity.

Since then Yau has held positions at the Institute for Advanced 
Study, Stanford University, and Harvard (where he currently chairs 
the math department), training two generations of grad students and 
embarking on far-flung collaborations that address topics ranging 
from the nature of dark matter to the formation of black holes. He has 
won the Fields Medal, a MacArthur Fellowship, and the Wolf Prize.

Through it all, Yau has remained bluntly outspoken. In China he has 
called for the resignation of academia’s old guard so new talent can 
rise. In the United States he has critiqued what he sees as rampant 
errors in mathematical proofs by young academics. Yau has also 
strived to speak directly to the public; his book The Shape of Inner 
Space, coauthored with Steve Nadis, is scheduled for publication this 
fall. He reflected on his life and work with DISCOVER senior editor 
Pamela Weintraub at his Harvard office over four days in February.

You’ve described your father as an enormous intellectual influ-
ence on you. Can you tell me about him?
He went to Japan to study economics, but he came back to help the 
Chinese defend themselves before the Japanese invaded in 1937. 
By the end of the war he was distributing food and clothes to the 
poor for the U.N. After the revolution in 1949, he worried about get-
ting in trouble with the Communists, so he brought the whole family 
to Hong Kong. We were very poor—at first we were almost starving 
—but my father had a large group of students constantly at home 
to talk about philosophy and literature. I was 10, 11, 12 years old, 
and I grew accustomed to abstract reasoning. My father made us 
memorize long essays and poems. At the time I didn’t understand 
what they meant, but I remembered them and later made use of it.

Did part of you ever rebel?
I read most of the Kung Fu novels in secret. I quit school for more 
than half a year. I’d wake up and say I was going, but I’d spend the 
whole day exploring the mountains and then come back—but I did 
the homework that my father assigned to me at home.

I heard you led a gang at one point.
I had a group of friends under me. I’d go around, and sometimes 
we ended up in fistfights with some other groups. So?

How did you go from that rough-and-tumble young man to the 
focused person you are now?
In the early 1960s my father was chairman of the department of 
literature and philosophy at Hong Kong College. The college presi-
dent wanted to make a deal with the Taiwanese government to 
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send in spies. My father refused to go along and resigned. That 
created a big money problem because he had eight children by 
then. My father had to run around among different, distant col-
leges to support the family. Back in China he’d lent a friend some 
money, and after the Communists took over, the friend moved to 
Macau, a city near Hong Kong, and ran his own schools. So he 
told my father, “I cannot return your money, but your daughter can 
come to my school, and I’ll give her free room and board and free 
tuition.” So my older sister went to Macau to study and got some 
flu, some funny disease, we never knew exactly what. She came 
back and she was treated, but she died in 1962. Then my elder 
brother got a brain disease; at the time we didn’t know what it 
was. My father had all kinds of burdens on his shoulders and then 
he got a disease, which I believe was cancer, but we didn’t know 
much in those days. My mother was running around trying to get 
funding to help my father. Finally we raised some money, but it 
was too late. He died after two months in the hospital in 1963, in 
the middle of my studies in the ninth grade. We could no longer 
afford our apartment, so we were kicked out. That’s when I realized 
I would have to make decisions for myself.

What did you do then?
After a while the government leased us some land, and we built a 
small house thanks to money from friends, but it was in a village far 
from school. The other kids looked down on us for being poor, and 
I had to ask the school president to allow me to pay tuition at the 
end of the year, when my government fellowship came through. It 
was humiliating. But I studied hard and did very well, especially in 
math. Then a former student of my father started a primary school 
in a town closer to school. He said I could help teach math and 
stay there at night. I had to take care of myself, I had to wash things 
and all of that, but I learned how to survive.

What happened once you made your way to college?
I had fallen in love with math early on, but at the Chinese University 
of Hong Kong I realized that mathematics was built on standard 
actions and logic. Soon I had arranged to take tests for the required 
math courses without actually attending while sitting in on more 
advanced classes, and no one seemed to mind. In my second year, 
Stephen Salaff, a young mathematician from U.C. Berkeley, came 
to teach in Hong Kong. He liked to talk to the students in the Ameri-
can way: He gave lectures and then he asked students questions. 
In many cases it turned out I could help him more than he helped 
me, because there were problems he couldn’t solve during class. 
Salaff suggested I apply to graduate school early. I was admitted to 
Berkeley and even got a fellowship. I borrowed some money from 
friends and flew to San Francisco in September 1969.

What did you think of California when you arrived?
The first thing that impressed me was the air. In Hong Kong it’s 
humid, hot, but in California it was cool and clear. I thought it was 
like heaven. A friend of Salaff’s came to the airport to pick me up 
and took me to the YMCA, where I shared a big room with four or 
five people. I noticed that everybody was watching baseball on 
TV. We didn’t have a TV at home. My neighbor who was sleep-
ing there was a huge black man. He was talking in a language I 
had never heard before. He said, “Man, where the hell you come 

from?” It was fun, but I had to look for an apartment. I was walking 
around the street when I met another Chinese student from Hong 
Kong and we decided to share, but we couldn’t afford a place. We 
looked around and found another Chinese student, from Taiwan, 
so there’s three of us and it’s still not enough. Then we found an 
Alaskan also studying math, also on the street. So four of us went 
in together and the rent for each was $60 a month. My fellowship 
gave me $300 a month, and I sent half of it home.

What about your math studies?
There were many holes in my knowledge so I’d wake up early and start 
class at 8 a.m. I took three classes for credit, and the rest I audited. I 
brought my own lunch so even at lunchtime I was in class. I was espe-
cially excited about topology because I thought it could help reveal the 
structure of space. Einstein used geometry in his equation to give us 
the local picture: how space curved around our solar system or a gal-
axy. But the Einstein equation didn’t give the overall picture, the global 
structure of the whole universe. That’s where topology came in.

What is topology? Is it like geometry?
Geometry is specific and topology is general. Topologists study 
larger patterns and categories of shapes. For example, in geom-
etry, a cube and a sphere are distinct. But in topology they are the 
same because you can deform one into the other without cutting 
through the surface. The torus, a sphere with a hole in the middle, 
is a different form. It is clearly distinct from the sphere because you 
cannot deform a torus into a sphere no matter how you twist it.

Does that mean geometry and topology are really two per-
spectives on the same thing?
Yes. It is like Chinese literature. A poem might describe a farewell 
between lovers. But in the language of the poem, instead of a man 
and woman, there is a willow tree, where the leaves are soft and 
hanging down. The way the branch is hanging down is like the 
feeling of the man and the woman wanting to be together. Geom-
etry gives us a structure of that willow tree that is solid and exten-
sive. Topology describes the overall shape of the tree without the 
details—but without the tree to start with, we would have nothing.

It has always amazed me to observe how different groups of 
people look at the same subject. My friends in physics look at 
space-time purely from the perspective of real physics, yet the gen-
eral theory of relativity describes space-time in terms of geometry, 
because that’s how Einstein looked at the problem.

When you looked at the world through the lens of geometry 
and topology, what did you learn?
That nonlinear equations were fundamental because in nature, 
curves abound. Climate isn’t linear. If the wind blows stronger that 
way, it may cause more trouble over there; it may even depend 
on the geometry of the earth. Usually you see the stock market 
described by linear equations and straight lines, but that is not 
really correct. The stock market fluctuates up and down in a non-
linear way. The Einstein equation described the curvature of the 
universe, and it was nonlinear. I ended up learning nonlinear equa-
tions from a master, although I didn’t know he was a master at 
the time. His name was Charles Morrey, and he was a classical 
gentleman. He always dressed in suits in class. He was a very nice 

There were many holes in my knowledge so I’d wake early and start class at 8 a.m. I was 
especially excited about topology; I thought it could help reveal the structure of space.
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man. Even if I was the only one there, he would lecture to me, just 
as if he were lecturing to the whole class.

Wait—you were sometimes the only one in his class?
Why should people care about ancient days? Morrey didn’t use 
modern notations. His book was hard to read. Kent State had just 
happened. The students and the faculty were all on strike, but Morrey 
still gave lectures. Soon everyone had dropped the class but me.

What happened next in your mathematical explorations?
It was Christmas break and I couldn’t go home, so I spent my time 
at the library reading all the journals and looking at rare books. 
That was the first time I met my wife, although only much later were 
we formally introduced. Through all this reading about topology I 
came across a theorem that talked about loops where curvature is 
everywhere negative—where the curve goes in like a saddle. The 
theorem says that when we have two such loops with vertices at 
the same point, they can’t deform into each other by bending or 
twisting unless they are equal to or multiples of each other. I came 
up with a related theorem: If the curvature is either negative or zero 
and if the loops conform, then there must be a lower-dimensional 
surface—specifically a torus—sitting somewhere inside.

How can a lower dimension sit inside a higher one?
Imagine attaching a rubber band to the handle of a coffee cup. 
The cup has three dimensions, but the rubber band, which is just 
a curved line, effectively has only one.

Why should anyone other than a mathematician care about a 
torus or a string hidden within higher dimensions?
Because topology can affect and constrain geometry in the physical 
world. If water flows around a sphere, for example, there must be 
two points where the water is totally still. On a planet covered with an 
ocean, the water can’t all flow in the same direction, say east to west, 
everywhere, without hitting a snag. In the case of another topology, 
the torus, water can flow around and around and there’s no point at 
which the flow stops because the hole eliminates the impasse. For 
each fixed topology, the geometry follows different laws.

In other words, you realized that topology sets the basic rules 
for geometry, which in turn affects the world around us. But 
then you went further, asking whether the underlying structure 
of space might explain the laws of physics. How so?
I started to look into complex manifolds. A manifold is just a space, 
with each point immediately around you looking like Euclidean 
space—the familiar kind of space that we see around us. Imagine the 
earth is covered with a checkerboard or a grid, like latitude and longi-
tude. This is the kind of coordinate system that Descartes introduced 
to geometry in the 17th century. At each point on the grid the space 
appears flat and finite, but it’s actually curved, a sphere. Instead of 
being measured with real numbers, though, we measure complex 
manifolds with complex numbers, in which one of the coordinates 
includes a real number multiplied by the square root of negative 1 
—an imaginary number that we call i. [Since the product of two nega-
tive numbers is positive, ordinary math suggests the square root of 
negative 1 cannot exist—hence the moniker “imaginary.”]

How can complex manifolds and complex numbers help us 
understand the structure of space?

Space is not necessarily something you see in day-to-day life. You 
can define geometry locally, but globally you cannot visualize the 
big picture, you can only imagine it and represent it through coor-
dinates. We draw lines of latitude and longitude in a coordinate 
system for the continents. But that system doesn’t work well at 
the north or south poles, where all the lines converge. In order to 
get a more complete picture in those regions, we need another, 
more localized coordinate system for more detail. In the end, we 
need several such coordinate systems patched together to get a 
detailed picture of the entire globe.

More generally, in describing any space, we are not restricted to 
the three dimensions we experience in our lives. Mathematically, we 
can suggest any number of dimensions: two, three, four, five, ten, just 
by drawing additional coordinates on a grid. In complex space, every 
number in a coordinate system describes not just one dimension but 
two. Most important, complex numbers make it simpler to move from 
one coordinate system to another, a necessary step when working in 
the higher dimensions necessary for string theory.

You are best known for your work on the Calabi conjecture, 
which at the time was a major unsolved problem in higher-
dimensional mathematics. What attracted you to it?
I was drawn to important problems that gave insight into geometry 
and space-time. Sometimes solving a problem creates a new kind 
of thinking, sometimes the math itself is beautiful. The problem I 
went with, the Calabi conjecture, is a very elegant statement about 
the curvature of complex manifolds.

What does “curvature” mean in this context, since you aren’t 
talking about the kind of curves we normally experience?
Curvature is second-order information—for instance, suppose I am 
driving a car around a curved freeway. The car’s velocity will change as 
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you go, so you can measure the curve in terms of changes in velocity 
along that one-dimensional line. Then there is Gauss curvature, which 
gives you the curvature of a two-dimensional surface by multiplying 
the largest and smallest curvature of the family of all curves tangential 
to the surface at a given point. For higher-dimensional space, such as 
the three-dimensional space around us, we calculate the curvature 
of all the two-dimensional surfaces passing through the point where 
curvature is in question. Finally there is Ricci curvature, which we 
measure by averaging the curvature of all two-dimensional surfaces 
tangential to each other along a common direction. In essence, Ricci 
curvature is an average of part of the total curvature of a space. It is 
an abstract geometric concept, but it is fundamental.

Why is Ricci curvature fundamental?
In physics, Ricci curvature is analogous to matter. Space with zero 
Ricci curvature is space without matter—a vacuum. 

And how does all this relate to the Calabi conjecture?
Calabi said that certain topological conditions call for the existence 
of nonflat, closed, complex spaces without Ricci curvature any-
where. Such spaces would enjoy many beautiful properties. You 
might find the sub-dimensional loops or the torus I described in 
that very first paper I wrote—or you might find intersecting branes 
[short for “membrane,” another topological shape]. I was 100 per-
cent sure that the spaces Calabi called for could not exist. No 
mathematician or physicist had ever found an example of one, and 
most geometers considered them too good to be true.

So what did you do next?
I spent a lot of time thinking about how to disprove Calabi. By 1973 
I was teaching at SUNY–Stony Brook and planning to move to 
Stanford. That May I put my belongings into this little Volkswagen 
and drove across the country on Highway 80. I thought America 
was a country where everyone traveled around, but to my amaze-
ment, a lot of the people I met told me they had never driven more 
than 10 miles from their town. I crossed the Rocky Mountains. The 
car broke down at one point. By the time I was at Stanford for a 
few months, I thought I had finally proven Calabi wrong.

Disproving the Calabi conjecture would have been a major 
achievement; how did you announce it?
In August there was a big conference at Stanford with the top geom-
eters in the world, including Calabi. I talked to Calabi and told him 
my idea. He said, “That sounds great. Why don’t you give a discus-
sion about it to me?” It was scheduled for 7 p.m. Calabi brought a 
few colleagues from the University of Pennsylvania, and then a few 
others heard about it, and a few others. There was a little crowd. I 
talked for about an hour, and Calabi was excited. “I’ve been wait-
ing for this for a long time, and I hope it’s right,” he said. All the 
other people said, “Great, finally we can stop the wishful thinking 
that Calabi is true.” Then Calabi wrote to me in October. He said, 
“I’m trying to reconstruct your argument, and I’m having some dif-
ficulty. Could you explain the detail?” I started to reconstruct it and 
I found a problem too. I got totally embarrassed. I did not respond 
to Calabi at that moment and instead tried extremely hard to patch 
up the proof. I couldn’t, so I looked around to find other examples 
where Calabi was wrong. I didn’t sleep for two weeks. But every 

time I found an example that was close, the proof fell apart at the 
last minute. Finally I said, gee, this cannot be such a delicate matter. 
Now I had much deeper insight into the issue and felt there must be 
some truth to the whole thing. I determined that it had to be right.

So after all that work trying to prove that Calabi’s conjecture 
was wrong, you decided it was correct after all?
I began developing the tools to understand it, and by 1975, only one 
part of the proof was left. That year my wife got a job in Los Ange-
les. I moved to UCLA. All in a short time, we got married, bought 
a car, bought a house in the Valley, and had to look for furniture. 
My mother came from Hong Kong for the wedding, and then her 
parents came—they all stayed under one roof and got into fights; it 
was complicated and crazy. I was fed up, so I locked myself in the 
study and thought about Calabi instead of the family problems, and 
I solved the whole thing. I went over the proof three times in detail, 
and I went to see Calabi in Pennsylvania. On a snowy Christmas 
Day, he came with me to visit mathematician Louis Nirenberg at New 
York University. We spent all day Christmas going over it, and I spent 
the next month writing up the proof for publication.

The implications were enormous. You were instantly famous.
It solved some major problems in algebraic geometry—about a 
dozen of them. A lot of people offered me jobs.

Some of the higher-dimensional spaces now called Calabi-
Yau spaces proved fundamental to string theory. What is  
the connection?
When Einstein published his general theory of relativity in 1915, 
there was an immediate urge to unify the force of gravity with the 
other forces known at the time, with electricity and magnetism. 
Mathematicians thought they could do this with five dimensions, 
four of space and one of time. But then physicists found new par-
ticles and needed extra dimensions for the strong force and the 
weak force. When they worked it all out, they determined they could 
explain the universe with something they called string theory, which 
replaces the pointlike particles in particle physics with tiny, elon-
gated vibrating strings. To be consistent with quantum theory, the 
strings needed 10 dimensions in which to vibrate: three of space, 
one of time, and six dimensions of “compact space.” Dimensions 
in compact space are so small you can’t detect them through any 
conceivable experiment. They amount to pure structure. It so hap-
pens that Calabi-Yau spaces with six dimensions also have specific 
topological traits corresponding to the requirements of string theory. 
If these spaces truly modeled the six-dimensional space called for 
in string theory, they would help us deduce the geometry and, by 
extension, the physical laws of the universe.

Some cosmology theories imply the existence of other uni-
verses. Could each Calabi-Yau space describe a different set 
of laws in each of those universes?
Yes, each isolated universe can be modeled by a different Calabi-
Yau space. But some of my colleagues have also studied a beautiful 
concept called mirror symmetry, in which each space has a mirror 
image with the same quantum field theory and the same physics.

If these spaces modeled the six-dimensional space called for in string theory,  they 
would help us deduce the geometry and the physical laws of the universe. 
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The Northern Hemisphere is home to about 450 species of oak.  
This micrograph image of an oak leaf’s surface reveals bunches 
of tiny hairs called trichomes, which concentrate light for 
photosynthesis and reduce water loss. Oak leaves also contain 
tannins, which can poison horses that have a taste for foliage.

MAY’S WHAT IS THIS? OAK LEAF

How many Calabi-Yau spaces are there?
Using a computer program, Philip Can-
delas at the University of Texas at Austin 
found up to 10,000 Calabi-Yau spaces, 
with almost half of them mirror partners 
of each other. Each member of a pair is 
topologically distinct but still conforms 
to the other algebraically and gives rise 
to the same forces, the same particles, 
the same rules. The resulting geometric 
structure can be used to determine physi-
cal quantities associated with each space, 
like particle mass.

String theory is often described as a 
mathematically elegant way to explain 
all of physics. But how can we know 
that it describes the real universe?
We cannot know for sure, but the mathe-
matics inspired by string theory solves some 
old, longtime questions. That part is rigor-
ous and its truth cannot be challenged. If 
the structure of the math is deep, it will solve 
something in nature one way or another; it is 
difficult to imagine that such deep structure 
corresponds to nothing. Everything funda-
mental in math has ultimately had a mean-
ing in the physical world.

You’ve long promoted mathematics in 
China. How have academic conditions 
changed there over the years?
I first went back in 1979, right after China 
opened up to outsiders. People were poor. 
Times were difficult. It was bedlam. I saw 
lots of people who were uneducated, 
and I felt I needed to help. By 1985 I’d 
taught about 15 Chinese grad students 
accepted to programs in the States. At 
first it was my adviser and mentor, Shiing- 
Shen Chern, who went to China and found-
ed a mathematical institute there. I didn’t 
want to interfere with his work, but he was 
getting old and I started to go visit more 
often. In 1994 I was asked to give a speech. 
I said it’s great that China has an open poli-
cy; now we must start moving forward step 
by step, training young people to establish 
an intellectual base.

Eventually you founded four math insti-
tutes in China. How did that happen?
I met with Jiang Zemin, the future presi-
dent, who wanted me to help build up 
math in China. After that, with the help of a 
donor, I built the Institute of Mathematical 
Sciences at the Chinese University of Hong 
Kong followed by three more institutes 
on the mainland—but China has always 
been run in a collaborative way, and other 
universities began demanding part of the 
funds. Still, the institutes have been able to 
carve out some independence, and today I 
go to China five or six times a year.

In the past decade, you’ve been critical 
of science and math in China. Why?
The university system is beset by academic 
politics, and it’s difficult for young people to 
move ahead. When China opened up, the 
people running things were in their fifties and 
sixties. The same people are still running 
things. Most do not follow modern develop-
ments because of their age. There are some 
brilliant young people, but it is a struggle for 
them to be recognized. Often that happens 
in China only after they are recognized by the 
outside world. I said, “Give some freedom to 
the young guys,” and people got upset.

You’ve commented that at the highest 
levels of accomplishment, Chinese math-
ematicians have far to go, and that the 
best of them have left the country. What 
are the prospects for math and science in 
China today?
The economy has been getting better and 
the government wants to invest more in sci-
ence, so in the long run, I think the future 
is bright. Many more Chinese graduate 
students who come to study in the United 
States will be willing to return to China.

How does China’s relationship with the 
United States come into play?
I see a constructive relationship for aca-
demia. The U.S. gets human resources in 
the form of bright, young Chinese kids. The 
students learn well here, because the U.S. 

provides them with the freedom to research 
in their own way, and some of them will 
bring their knowledge back to China. But 
my goal is to train many more young math-
ematicians within China by providing an 
environment that allows them to focus on 
research and be recognized for their work.

You have criticized the academic sys-
tem in the United States as well.
Young people are under too much pressure 
here. As a result, some of the proofs they 
publish are factually wrong. Before I pub-
lished my proof of the Calabi conjecture, I 
checked it three times. Many young math-
ematicians don’t do that.

Most people don’t realize how political 
math can be: In 2006 The New Yorker 
accused you of taking credit from the 
Russian mathematician Grigory Perel-
man after he proved the famed Poincaré 
conjecture. What happened there?
In a process as intricate and daunting 
as proving the Poincaré conjecture, it is 
understandable that Perelman released his 
manuscript with several key steps merely 
sketched or outlined. One of my students 
tried to fill in some of the details, and I sup-
ported that. I also said that my friend Rich-
ard Hamilton, a geometer at Columbia Uni-
versity, laid much of the groundwork that 
Perelman ultimately relied on to construct 
his proof. For these things The New Yorker 
tried to accuse me of stealing credit, but that 
is ridiculous. What I think of as the Hamilton-
Perelman proof of the Poincaré conjecture 
is a great triumph for mathematics, and I 
fully support the award of the Fields Medal 
to Perelman. Hamilton deserved the Fields 
Medal too, but he was ineligible because of 
the age restriction [you must be under 40]. 
To suggest that my position has ever been 
any different is completely untrue.

Physicists often talk about the beauty of 
math. What does that mean to you?
The first time I saw my wife, I thought she 
was charming—more than charming, shock-
ing to me. I had great motivation to know her 
more. When I look at the Calabi conjecture, it 
shocks me too. It’s an elegant, simple con-
struct and explains a great deal. It’s excit-
ing when you go deeper and deeper into a 
complicated structure that you can spend 
most of a lifetime working on. It was shock-
ing when it showed up in physics, and it’s 
beautiful whether it’s true or not. 
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